HASLERSTIFTUNG

Math of Al

Volkan Cevher, Associate Professor EPFL

EPFL

Preface

My research:

Machine Learning (ML)

Optimization

Signal Processing

Information Theory

Statistics

My courses (2019-20):

Mathematics of Data

Reinforcement Learning

Advanced Topics in ML

Strengths

A SWOT Analysis

Machine Learning (ML)

 ML is an interdisciplinary study of algorithms, statistical models, and error functions jointly with computer systems to perform specific tasks

"Only a fool learns from his own mistakes. The wise man learns from the mistakes of others" - Otto von Bismarck

ML makes you wiser

The ingredients via a simplified supervised learning example

Retinopathy

Lymph node cancer

 ML is an interdisciplinary study of algorithms, statistical models, and error functions jointly with computer systems to perform specific tasks

Task: Learn a mapping from image to disease

$$\mathbf{y} = \text{function}_{\mathbf{x}}(\mathbf{a}) = \underbrace{f(\mathbf{a}'\mathbf{x})}_{\text{model}}$$

The ingredients via a simplified supervised learning example

 ML is an interdisciplinary study of algorithms, statistical models, and error functions jointly with computer systems to perform specific tasks

Gradient Descent Algorithm

Supervised ML: Use algorithms to learn "model"

$$\min_{\mathbf{x}} \operatorname{Error}\left(\mathbf{y}, f(\mathbf{a}'\mathbf{x})\right)$$

O Opportunities

Academic theory vs industrial practice

Conventional wisdom in ML until 2010:

Simple models + simple errors

Profile picture

Tagged photo

optimization landscapes

Enter neural networks: Universal approximation

$$f(\mathbf{x}; \beta, W, b) = \beta^T \sigma(W\mathbf{x} + b)$$

Challenges:

- 1. too big to optimize!
- 2. did not have enough data
- 3. could not find the optimum via algorithms

Multilayer neural networks: Tractable & nearly universal

real function

optimization landscape

Weaknesses

A SWOT Analysis

Robustness

Robustness is an active research area

- He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep Residual Learning for Image Recognition. arXiv e-prints, page arXiv:1512.03385.
- Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q. (2016). Densely Connected Convolutional Networks. arXiv e-prints, page arXiv:1608.06993.
- Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. (2018). Spectral normalization for generative adversarial networks. In International Conference on Learning Representations.
- Raghunathan, A., Steinhardt, J., and Liang, P. S. (2018). Semidefinite relaxations for certifying robustness to adversarial examples. Neurips.
- Wong, E. and Kolter, Z. (2018). Provable defenses against adversarial examples via the convex outer adversarial polytope. ICML.
- Madry, Aleksander and Makelov, Aleksandar and Schmidt, Ludwig and Tsipras, Dimitris and Vladu, Adrian. Towards Deep Learning Models Resistant to Adversarial Attacks. ICLR.
- Huang, X., Kwiatkowska, M., Wang, S., and Wu, M. (2017). Safety verification of deep neural networks. Computer Aided Verification.

Adversarial examples are inevitable!

• Concentration-of-measure phenomenon

[Shafahi et al. ICLR 2019]

Interpretability

S W Weaknesses O T Threats

Interpretability in ML is an active research field

- Baehrens, David and Schroeter, Timon and Harmeling, Stefan and Kawanabe, Motoaki and Hansen, Katja and Mueller, Klaus-Robert. Simonyan, Karen and Vedaldi, Andrea and Zisserman, Andrew. How to Explain Individual Classification Decisions. JMLR 2010.
- Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. arXiv e-prints. arXiv:1312.6034. 2013.
- Ribeiro, Marco and Singh, Sameer and Guestrin, Carlos. "Why Should I Trust You?": Explaining the Predictions of Any Classifier. KDD 2016.
- Sundararajan, Mukund and Taly, Ankur and Yan, Qiqi. Axiomatic Attribution for Deep Networks. ICML'17.
- Shrikumar, Avanti and Greenside, Peyton and Kundaje, Anshul. Learning Important Features Through Propagating Activation Differences. ICML'17.

A robustness & interpretability result from my own work

On Certifying Non-Uniform Bounds against Adversarial Attacks. Liu, Chen and Tomioka, Ryota and Cevher, Volkan. ICML'19.

- 1. Bias
- 2. Malicious data
- 3. Reproducibility

Opportunities

A SWOT Analysis

Generative Adversarial Networks

Progressive Growing of GANs for Improved Quality, Stability, and Variation Karras et al. [ICLR 2018]

Aight-Fidelity I generate heration with Fewer Labels Kacie Mat, as Channen Mat, Ritter Mat, Zhai X, Bachem O, Sylvain S [2019]

(a) RMSProp

(b) Adam

(c) Mirror-GAN

Finding Mixed Nash Equilibria of Generative Adversarial Networks Hsieh et al. [ICML 2019]

+ Uncertainty quantification extension with Schlumberger (Boston)

Fast and Provable ADMM for learning with generative priors. Latorre, F. et Al. [NeurIPS 2019]

HASLERSTIFTUNG

From clustering to adversarial robustness...

Decision Intelligence via semidefinite programming

An Inexact Augmented Lagrangian Framework for Nonconvex Optimization with Nonlinear Constraints. Sahin M. F. et. al. [NeurIPS 2019]

HASLERSTIFTUNG

Closed loop deep Bayesian inversion: Uncertainty driven acquisition for fast MRI. Sanchez et al. Under review.

Additional fundamental trade-offs published at leading venues thanks to Hasler:

- Optimal rates for spectral algorithms with least-squares regression over hilbert spaces. Lin, J. et al. [ATCHA 2018]
- Optimal Convergence for Distributed Learning with Stochastic Gradient Methods and Spectral Algorithms.

Lin, J. and Cevher, V. [ICML 2018]

 Optimal rates of sketched-regularized algorithms for least-squares regression over Hilbert spaces.

Lin, J. and Cevher, V. [ICML 2018]

HASLERSTIFTUNG

Truncated variance reduction: A unified approach to Bayesian optimization and level-set estimation Bogunovic et al. [NIPS 2017]

Adversarially robust Gaussian Process Optimization Bogunovic et al. [NeurIPS 2018]

Robust Reinforcement Learning with Langevin Dynamics. Under review.

Interactive Teaching Algorithms for Inverse Reinforcement Learning. Kamalaruban et al. [IJCAI 2019]

W Weaknesses T Threats

Applications + Highlights from my own work

Interaction-limited Inverse Reinforcement Learning. Under review AAAI.

Single Molecule Localization Microscopy

Strategies for increasing the throughput of super-resolution microscopies Mahecic et al. [Current Opinion in Chemical Biology]

Chemical machine learning with kernels: The impact of loss functions. Van Nguyen et al. [Quantum Chemistry 2019]

Threats

A SWOT Analysis

S W Weaknesses O T Threats

The Al hype vs the ML revolution

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

S W Weaknesses O T Threats

Talent pool: Missing the top talent vs the needed talent

Sustainability:

The estimated costs of training a model

	Date of original paper	Energy consumption (kWh)	Carbon footprint (lbs of CO2e)	Cloud compute cost (USD)
Transformer (65M parameters)	Jun, 2017	27	26	\$41-\$140
Transformer (213M parameters)	Jun, 2017	201	192	\$289-\$981
ELMo	Feb, 2018	275	262	\$433-\$1,472
BERT (110M parameters)	Oct, 2018	1,507	1,438	\$3,751-\$12,571
Transformer (213M parameters) w/ neural architecture search	Jan, 2019	656,347	626,155	\$942,973-\$3,201,722
GPT-2	Feb, 2019	-	-	\$12,902-\$43,008

Note: Because of a lack of power draw data on GPT-2's training hardware, the researchers weren't able to calculate its carbon footprint.

Table: MIT Technology Review • Source: Strubell et al. • Created with Datawrapper

Sustainability:

Dennard scaling & Moore's law vs Growth of data

Energy constraints / Time constraints

Learning-based compressive sensing + hardware design. Baldassarre et al., Gozcu et al., Aprile et al. [IEEE TMI, IEEE TSP, IEEE CnS, IEEE TCAS]

HASLERSTIFTUNG

IBM Thesis Award 2019

Energy constraints of recording neural data

Hardware/software co-design

Informed design of hardware of application needs **Informed design of software** of hardware capabilities

Energy constraints of recording neural dat

> 30 dB quality

AFE + ADC

DSP

TX

LBCS
SHS
BERN
MCS

HASLERSTIFTUNG

Time constraints of MRI

Accelerate the MRI scan 5 times.

 Pick the most relevant data only for your method.

HASLERSTIFTUNG

Learning-based compressive MRI. Gözcü B., et al [IEEE TMI - 2018] Rethinking Sampling in Parallel MRI: A Data-Driven Approach. Gözcü B. et al. [EUSIPCO 2019]

Time constraints of MRI

 Time drastically increases the dimensionality of data

 Reduce computations by a factor 200: from a month to 4 hours without losing performance.

HASLERSTIFTUNG

Scalable learning-based sampling optimization for compressive dynamic MRI. Sanchez T., et al. Under review.

Conclusions

- Are you wiser?
 - time-data-energy trade offs
- Existential threats = "Opportunities"
 - o talk to me offline
- ML partnerships with EPFL & Hasler
 - Hype protection
- Thanks for the support!
 <u>volkan.cevher@epfl.ch</u>
 <u>https://ml.epfl.ch</u>

Neural Interfaces for Cyber-Human Systems

Neuroscientific progress in spinal cord injury (SCI) rehabilitation is fast. Proof of concept on rats to humans in 6 years.

Enabling hardware lags behind.

We are ambitious to fix that.

S W Weaknesses O T Threats

Hardware challenges in neural interface design

Recording the most of spatiotemporal information

Multichannel, high-resolution acquisition front end How many channels fit in one chip?

Reliable long-term use

Wireless power and data transfer

How much energy is needed per bit sent?

Processing information

Extract/compress information

How well is the representation?

Neural Interface Project @ LIONS

S W Weaknesses

O T Threats

- 1. Sampling mask design
- 2. Description to digital hardware
- 3. ASIC implementation

PMU

CONFIG RX -

- 4. Mixed-signal sensor
- 5. Wireless connectivity*
- 6. SoC implementation

- 7. Probe integration*
- 8. In-vivo validation*

^{*} Collaborative work

Learning-based Compressive Subsampling

- ✓ Reduces data rate
- ✓ Saves power on wireless transmitter
- ✓ Cost of compression less than transmission
- ✓ Higher overall energy efficiency

State-of-the art reconstruction performance

2018, UMC 180nm

Multichannel timing compatibility with LBCS

On-chip clock generation and distribution

Ensures recording time synchrony

2019, TSMC 40nm

Prototype v3:

Electrode-to-wave signal chain
Signal conditioning
Digitization
Wireless power and data transfer

Beats SoA in performance, power and area*

2020, TSMC 65nm

Scaling up LBCS: Use less data

Gözcü B., et al [IEEE TMI - 2018]

Rethinking Sampling in Parallel MRI: A Data-Driven

Approach. Gözcü B. et al. [EUSIPCO 2019]

HASLERSTIFTUNG

optimization for compressive dynamic MRI.
Sanchez T., et al. Under review. Ing
optimization for compressive dynamic MRI.
Sanchez T. et al. Under review.

Sampling for Imaging

Acquisition model:

$$\mathbf{b} = \mathbf{P}_{\mathcal{O}} \mathbf{F} \mathbf{x}$$

- Use a reconstruction algorithm to form an estimate of x
- How can we design a good sampling mask Ω given a reconstruction method and anatomy?

Solution: Data-driven approach

Mask design should not be isolated from reconstruction

- Adapt to the reconstruction method, anatomy and imaging procedure (single vs multi-coil)
- Model-based approaches (e.g. variable density) are limiting
- Theorem (informal):

Given a cardinality constraint, the optimal mask sampling distribution has a compact support.

Learning-based compressive MRI. Gözcü B., et al [IEEE TMI - 2018]

Scalable learning-based sampling optimization for compressive dynamic MRI. Sanchez T., et al.(2019). Rethinking Sampling in Parallel MRI: A Data-Driven Approach. Gözcü B. et al. (2019). [EUSIPCO 2019].

How do the sampling masks look like?

Dynamic setting

 Static and dynamic: our masks achieve structures that VD cannot obtain.

Rethinking Sampling in Parallel MRI: A Data-Driven Approach. Gözcü B. et al. [EUSIPCO 2019] Scalable learning-based sampling optimization for compressive dynamic MRI. Sanchez T., et al. Under review.

Integrated Gradients

Sundararajan, Mukund and Taly, Ankur and Yan, Qiqi, Axiomatic Attribution for Deep Networks. ICML'17

