



# Easy-Flow: Comparing and integrating Wireless and PLC Medium Access Control Protocols.

Christina Vlachou, Julien Herzen, Patrick Thiran (EPFL)

Marc Sommer, Hervé Dedieu (HEIG-VD)

Gérôme Bovet, Jean Hennebert (HES-FR)

CH-1015 Ecublens
Patrick.Thiran@epfl.ch
http://lcawww.epfl.ch

# **Home and Building Automation Today**

- ☐ High-end market, mainly for security and comfort.
- ☐ Not well suited for client/server mode, low rate (~10 kb/s)



## **Home and Building Automation Tomorrow**

- ☐ Global market, for security, comfort and energy savings.
- ☐ Low-power, low-cost, higher rate (100's Mb/s)
- ☐ Hybrid wireless (RF) and power line (PLC) communications.



## Multi-hop hybrid networks: Wifi with PLC

- ☐ Hybrid wireless (RF) and power line (PLC) communications.
- ☐ High Rate (Security, Streaming)
- ☐ Low Rate (Energy Saving, Comfort)



# **Hybrid PLC-RF Home Networks**

|                                   | Wireless (RF) | Power Line Com. (PLC)                                                 |
|-----------------------------------|---------------|-----------------------------------------------------------------------|
| High<br>Rate<br>(EPFL)            | IEEE 802.11   | IEEE 1901                                                             |
| Low<br>Rate<br>(HEIG Vo<br>HES-Fr |               | Homeplug C&C: fading away -> HomePlug GreenPHY (similar to IEEE 1901) |

# **Hybrid PLC-RF Home Networks**

|              | Wireless (RF) | Power Line Com. (PLC) |
|--------------|---------------|-----------------------|
| High<br>Rate | IEEE 802.11   | IEEE 1901             |

- 1. IEEE 802.11 vs IEEE 1901
- 2. IEEE 802.11 with IEEE 1901

## High Data Rate CSMA MACs: Wifi vs PLC







- □ Wireless (RF): IEEE 802.11 well studied both in single hop and multi-hop networks
  - > 240000 entries on scholar.google for "IEEE 802.11 + wireless".
  - Throughput: computed with high precision using Bianchi's model
  - Fairness: known in single-hop (fair) and multi-hop (unfair)

- ☐ Power Line (PLC): **IEEE 1901**little studied both in single hop and multi-hop networks
  - < 1000 entries on scholar.google for "IEEE 1901 + PLC").
  - Some early work on throughput, but little known.
  - Fairness is unknown

- ☐ Both protocols are CSMA based:
  - Pick Contention Window CW and draw back-off BC in [0,CW].
  - Decrement BC, transmit when BC = 0.
  - If collision, then CW = 2CW.
- ☐ IEEE 802.11 is
  - Conservative (large CW)
  - "Simple" (only one counter BC)
  - If medium sensed busy, BC frozen until medium sensed idle
  - Only stations involved in a collision double their CW.

- ☐ IEEE 1901 is
  - Aggressive (small CW)
  - Complex (3 counters BC, DC, BPC)
  - If medium sensed busy, then
    - If DC = 0, then CW = 2CW, select new DC ≥ DC (dep. on BPC), draw BC in [0,CW]
    - If DC ≠ 0, then decrement BC and DC
  - After a collision, all stations involved in collision and with DC = 0 double their CW.

## Which is fairer: Wifi or PLC?



- ☐ Metric for evaluating (short-term) fairness:
  - Jain's fairness index FI over window of W packets (0 ≤ FI ≤ 1: perfect fairness if FI = 1).

\*simulation and test-bed results

N = 3 stations



- ☐ Metric for evaluating (short-term) fairness:
  - Jain's fairness index FI over window of W packets (0 ≤ FI ≤ 1: perfect fairness if FI = 1).



- ☐ Metric for evaluating (short-term) fairness:
  - Number K of packets between two consecutive packets sent by the same station (perfect fairness if K = N-1 for N competing stations).
  - Theorem: For N=2, K is short tailed for 802.11, and long tailed for 1901:

$$P_{1901}(K > k) / P_{802.11}(K > k) -> \infty$$
 for  $k -> \infty$ 

□ IEEE 1901: P(K=k) computed in [VlachouHT13]

☐ IEEE 802.11: P(K=k) computed in [Berger et al 04]



## **Effect on Delay**

- Metrics for evaluating (short-term) fairness:
  - Station A sends UDP traffic to station C.
  - Station B sends ping requests to station C.
- Median RTT of 10<sup>4</sup> requests of B as a function of load of A.





## Multi-hop hybrid networks: Wifi with PLC

- ☐ Nodes have RF, PLC or dual PLC/RF interfaces.
- ☐ Offers increased throughput and robustness.
- ☐ Link aggregation between some nodes -> load balancing.
- ☐ Multiple paths between nodes -> routing.



## First step: Load balancing algorithm *LB*



- ☐ Dynamic load balancing because T, C<sub>plc</sub> and C<sub>wifi</sub> time-varying.
- ☐ First implementation with a Dynamic Weighted Round Robin
  - Capacity measured periodically,
  - Used to compute weights.

# **Hybrid PLC-RF Home Networks**

|             | Wireless (RF) | Power Line Com. (PLC) |
|-------------|---------------|-----------------------|
| Low<br>Rate | IEEE 802.15.4 |                       |

**IEEE 802.15.4 Devices: Smartlabel** 

#### **RF Modems for 802.15.4**

- ☐ A custom LR RF device has been built : SmartLabel
- ☐ Uses 802.15.4 technology with sub-1GHz capabilities allowing frequency diversity of LR network with respect to 802.11 2.4GHz bands in HR network.
- □ Ultra-low power
- ☐ Similar to state-of-the-art Tmote Sky nodes with in addition :
  - extended memory ressources allowing implementation of OS kernels more powerful than Contiki (from 48kbits to 128kbits),
  - ultra-low power epaper passive screen allowing versatile applications,
  - solar cell with energy harvesting capabilities.



#### **RF Modems for 802.15.4**



#### **Features**

- ☐ E-ink 2-inch 200x96 pixels display
- ☐ IEEE 802.15.4 / 868MHz
- ☐ Battery powered (for bootstrap)
- □ 7 working prototypes

## Interfacing HR with LR



- □ AP to HR network are extended using a SmartLabel as a bridge between HR network and LR network.
- ☐ Bridge configured to forward packets from the AP to the LR network and vice versa.
- ☐ The configuration is made by the AP side software through a USB connection using Service Location Protocol.

## Subscription of Smartlabels to LR network



☐ Each SmartLabel in the RF range of that access point is now able to subscribe to that LR network following a standard threeway handshake.

## Interfacing HR with LR



#### ☐ Next steps:

- IEEE 802.15.4: have a first version of own motes in which we can implement a 6LoWPAN technology (i.e light IP stack).
- Prepare the ground for the development of a gateway in which we will embed the three technologies (IEEE 802.11, P1901 and 802.15.4) plus the load balancing technology for HR network.

# **Hybrid PLC-RF Home Networks**

|                              | Wireless (RF) | Power Line Com. (PLC) |
|------------------------------|---------------|-----------------------|
| Hig<br>Rate<br>(EPF          | IEEE 802.11   | IEEE 1901             |
| Lov<br>Rate<br>(HEIG<br>HES- | lEEE 802.15.4 |                       |

#### **Demonstration**



#### ☐ Two goals:

- High rate: What throughput can we achieve with dual PLC/RF links (802.11 + 1901)?
- Low rate: Extend the access point capabilities w.r.t. sub1-GHz technology and test the accept point functionality.

## **Conclusion**

#### ☐ High Data Rate:

- IEEE 1901 is less fair than IEEE 802.11 for N < 15 stations; it is particularly unfair for N = 2 stations [VlachouHT13].
- Verified analytically (N=2), by simulations and testbed experiments.
- First step towards hybrid, high rate networks: Load balance between RF running 802.11 and PLC running 1901.
- Next step: routing for multi-hop Hybrid Networks running 802.11 and 1901.

#### ■ Low Data Rate:

- SmartLabel, LR RF device running on IEEE 802.15.4, has been built
- Ultra-low power devices with sub-1GHz transceiver for frequency diversity w.r.t. 802.11 technology
- Protocols for discovery and detection of AP.
- Next step: IEEE 802.15.4 with 6LoWPAN technology; prepare the ground for the development of a gateway in which we will embed the three technologies (IEEE 802.11, P1901 and 802.15.4).

## **Next step: MAC + Routing for Hybrid Networks**

Devise routing + MAC schemes that...

- ☐ ... exploit diversity (HR network)
  - RF nodes and links
  - PLC nodes and links.
- under the constraint of time varying and unreliable channels:
  - PLC: switching of power devices,
  - RF: fading and multi-path effects.
- ☐ ... integrate at APs
  - 802.11, 1901 and 802.15.4.
- ☐ ... save energy (LR network)
  - RF nodes: ultra-low power.

