POPWIN

Parallel Object Remote Programming for Wireless Network over IPv6

Pierre Leone University of Geneva

Project in collbaration with Pierre Kuonen, EIA-FR/Fribourg

Project goal

POP-C++ (POP-Java) is an **object-oriented** system for programing

parallel applications.

Project goal

The goal of the project is to develop POPWIN an **object-oriented** system to program wireless sensor network.

EIA-FR/Fribourg

University of Geneva

Pierre Kuonen Yao Lu

Pierre Leone Cristina Muñoz

Model of programming Implementation of POPWIN Application

Network primitives Energy balance mechanisms IPv6 – 6LowPan

Network primitives

Executing an object requires some resources

- Computing resources
- Sensory resources temperature, pressure, etc.
- ...

Classical resources might be extended resources particular to sensor network

- Location
- Geographical constraints

Network primitives

First problem: Given a set of sensors that communicate wirelessly, find the appropriate resources in the network.

General approach:

- Use the context of Publish/Subscribe system:
 - Publishers advertise about the resources they offer
 - Subscriber search for resources
- Cooperative system
 - Publishers and subscribers participate to the process of matching demands
 - All the nodes in the network participate

Matching Pub/Sub

The sensors are located in a plane

Matching Pub/Sub - Heuristic

Matching Pub/Sub - Heuristic

Matching Pub/Sub - Heuristic

1. Select the node $v \in N_y$ Such that the number of 2-hops paths from x to vis minimal, i.e.

$$argmin_{v \in N_{v}} \mid N_{v} \cap N_{x} \mid$$

- 2. Introduce a penalty to the nodes that are in N_{χ}
- 3. Once a node is chosen add a random penalty

The first time the node y receives the notification it :

- Memorizes the trace of the path
- Memorizes the node x from which it (first) receives the notification

Properties:

- Covers the entire graph because of the random penalty
- The backward path is loop-erased

3000 nodes, mean number of neighbors 15

3000 nodes, mean number of neighbors 15

Time to intersection

Measure: Two nodes start the process and synchronously process until intersection.

Time to intersection

Time to intersection Comparison with RW

Measure: Comparison of the time to intersection against a pure Random Walk strategy

Time to intersection - RW

Time to intersection - RW

Time to intersection

Conclusion 1: Directionality shorten the time to intersection

Time to intersection Asynchrony

Measure: The publisher and subscriber are not synchronous, i.e. they are **working at different speeds**.

Comparison with RW

Conclusion 2: Cooperation shorten the time to intersection

Routing efficiency

Measure: We consider a **permutation** of the nodes and for each permutation we execute the process and compute the number of path that pass through each nodes (the load).

Nodes load

Nodes load

Nodes load Comparison with RW

Nodes load - RW

Nodes load - RW

SmartWold Hearings - Hasler Stiftung March 2013

POPWIN project

Nodes load Comparison with Shortest path

Nodes load - RW

Nodes load - RW

Node loads 2500 Shortest nodes, 0.04 radius Max: Mean: Median: Max: Mean: Median:

Nodes load

Conclusion 3: The mechanism balances the number of path that pass through the nodes as efficiently as a Random Walk.

Remarks:

- In the classical setting routing a permutation is a tool to estimate lower/upper bound on the performance of routing algorithms.
- In our setting routing the permutation makes possible to match publication/subscription. A subscription from a node x follows the path x -> perm[x] -> perm[perm[x]] -> ... and, check at all intermediate nodes if the path to the publication is known.

Further short term research directions

- Investigate the performance where there are one publisher many subscribers.
- We need to find efficient heuristic to stop/restart exploration of the graph.
- Alternatively we plan to investigate the routing of a permutation with a local algorithm. One path starts and stops at the 'right time'.
- Consider different graph structures, not necessarily modeling wireless networks.

POPWIN

Parallel Object Remote Programming for Wireless Network over IPv6

Pierre Leone University of Geneva

Project in collbaration with Pierre Kuonen, EIA-FR/Fribourg

Comparison with previous works

- Directional Rumor Routing in Wireless Sensor Networks, the nodes are localized
- A Directional Gossip Protocol for Path Discovery in MANETs., estimation of the critical probability.
- Directed diffusion, ...,
- Directional Gossip: Gossip in a wide Area Network
- Lightweight tracking algorithm
- Techniques based on Rendez-vous
- Directional work, gossip and broadcast
- Centrifugal random walk, node Sampling, uses a spanning tree