HOCHSCHULE

ETH LUZERN

Roboscoop!

Project presentation
Spiez, 13 March 2013

Partners ©

ETH Zurich, Chair of Software Engineering (g

Software Engineering

Hochschule Luzern, iHome Lab i Home Lab

uuuuuuuuuu
LUZERN

ETH Zurich, Autonomous Systems Lab

Roboscoop project members

O]

Ochairof i Home Lab
Software Engineering HOCHSCHULE
> Bertrand Meyer » Alexander Klapproth
» Benjamin Morandi » Dieter von Arx
> Sebastian Nanz > Martin Biallas
> Andrey Rusakov - Rolf Kistler
> Jiwon Shin > Marcel Mathis
> Andreas Rumsch

3

Goals ®

Develop framework for concurrent robotics programming

Produce prototype of SmartWalker for elderly people

Learn about software engineering for robotics

Achievements so far

First version of Roboscoop framework

First version of SmartWalker

Setting up a course to teach this stuff!

O]

Software architecture

[A
Roboscoop

O-0 structure, coordination, concurrency

SCOOP (wheels, navigation system, GUI, etc.)

Integration with other frameworks,
external calls

(\ Serial communication with hardware
Coordinate systems

ROS Image processing

Navigation

O]

SCOOP

Simple Concurrent Object-Oriented Programming
> Easy parallelization
> One more keyword in Eiffel (separate)

> Coordination is easy to express: close correspondence

with behavioral specification
> Natural addition to O-O framework

> Retains natural modes of reasoning about programs

O]

SmartWalker

Smart assistant for elderly people -

Hi-tech extension of the regular walker %

Autonomous robot with sensors and actuators

Possible functionalities:

> Support while going uphill/downhill
> Navigation during shopping
> Finding a charging station

> Fall detection

O]

SmartWalker ©

| Tablet PC running SCOOP Single-board computer |

Powerful motors

SmartWalker: Hardware ©

Single-board computer (BeagleBone)
> Low-cost

Credit-card-sized

A\

A\

720MHz ARM processor

A\

Operating system: Linux computer

A\

Connectivity: 2 x 46 pin headers

10

More about the hardware

Motor controller: controls motors up to 350 W

> Controls force of motors according to given
voltage & direction signal &

> Optimized for controlling e-bike motors

Motor:
> Integrated Hall sensor to determine position
> Accumulator
> 36 V/ 12 Ah with electronic management

O]

SmartWalker: Software

Single-board computer

> Measures 2D position

> Speed control loop for each wheel

> Controls wheels concurrently
Tablet PC:

> User interface

> High-level control

> Roboscoop

Communication over ROS

O]

12

Roboscoop ©

Coordination layer above SCOOP (and hence Eiffel)

Thr‘ee-la)./er‘ ar'c.hlfec‘rure (Gat, 1997): [Delibera Tor‘]
> Deliberation -
> Sequence

9 Submit plan | Query,
> Control Respond
Synchronization: wait conditions : =
Sequencer |
Interoperability through ROS A
(external calls) Submit plan Query

Respond
P
Start, Stop

[Controller J

Query, Respond

Object & processor architecture ©

i ath_signaler PATH_
.@ SIGNALER
STOP_
SIGNALER

14

SCOOP: separate calls (“embarrassingly parallel”)@

walker_signaler: separate WALKER_SIGNALER
-- From sensors: position, orientation...,

stop_signaler: separate STOP_SIGNALER
path_signaler: separate PATH_SIGNALER
actions: LIST [separate ACTION]

start_path (left, right: separate WHEEL)
-- Perform sequence given by actions.
local
i: INTEGER
do
across actions as a until
stop_requested (stop_signaler)

loop
[execuTe (a, path_signaler, stop_signaler, left, r'igh’r)]
wait (a, path_signaler, stop_signaler, left, right)
end
end

15

SCOOP: synchronization through preconditions ©

to_next (a: ACTION
left. right: separate WHEEL
ps: separate PATH_SIGNALER
ss: separate STOP_SIGNALER
ws: separate WALKER_SIGNALER)
--Unless stop requested, complete a and enable next action.
require
ss.stop_requested or (ps.state = a.index and a.done (ws))
do
left.stop
right.stop
if not ss.stop_requested then
ps.set_state (a.index + 1)
end
end

16

. . e
SCOOP: wait by necessity ?
path: LIST [separate ACTION]
executor: EXECUTOR

-- To obtain actions from a script:
path := parser.item (script)

-- To execute sequence of actions:
across path as p loop add_action (executor, p.item) end

add_action (e: separate EXECUTOR; a: separate ACTION)
--Add a to action executor.

local

s: BOOLEAN
do

e.add_action (a)

-- The order matters!
end

17

Application to teaching ©

New interdisciplinary course at ETH, Fall 2013:

Robot Programming Laboratory
Open to CS and ME students
Combines software engineering, concurrency & robotics:
> How software engineering applies to robotics
> Main architectures, coordination, synchronization methods
> Experience in programming a small robotic system
> Sensing, planning and control
> ROS and Roboscoop

18

Things we learned ©

Concurrency is great for robotics

A SmartWalker would be truly useful

This stuff is tough

19

Roboscoop: what’s next? ©

Gain more experience through course

Continue enhancing the Roboscoop concurrency framework
Add sensors tfo SmartWalker!

Implement SmartWalker scenarios

Evaluate applicability to other robots

Perform evaluation of SCOOP for robotics

20

10

