
1

Roboscoop!
Project presentation

Spiez, 13 March 2013

2

Partners

ETH Zurich, Chair of Software Engineering

Hochschule Luzern, iHome Lab

ETH Zurich, Autonomous Systems Lab

2

3

Roboscoop project members

 Bertrand Meyer

 Benjamin Morandi

 Sebastian Nanz

 Andrey Rusakov

 Jiwon Shin

 Alexander Klapproth

 Dieter von Arx

 Martin Biallas

 Rolf Kistler

 Marcel Mathis

 Andreas Rumsch

4

Develop framework for concurrent robotics programming

Produce prototype of SmartWalker for elderly people

Learn about software engineering for robotics

Goals

3

5

First version of Roboscoop framework

First version of SmartWalker

Setting up a course to teach this stuff!

Achievements so far

6

Serial communication with hardware
Coordinate systems
Image processing
Navigation
…

Integration with other frameworks,
external calls

O-O structure, coordination, concurrency
(wheels, navigation system, GUI, etc.)

Software architecture

Roboscoop

SCOOP

ROS

4

7

SCOOP

Simple Concurrent Object-Oriented Programming

 Easy parallelization

 One more keyword in Eiffel (separate)

 Coordination is easy to express: close correspondence

with behavioral specification

 Natural addition to O-O framework

 Retains natural modes of reasoning about programs

8

SmartWalker

Smart assistant for elderly people

Hi-tech extension of the regular walker

Autonomous robot with sensors and actuators

Possible functionalities:

 Support while going uphill/downhill

 Navigation during shopping

 Finding a charging station

 Fall detection

 …

5

9

SmartWalker

Tablet PC running SCOOP

Powerful motors

Single-board computer

Battery

E-bike motor controller

10

SmartWalker: Hardware

Single-board computer (BeagleBone)

 Low-cost

 Credit-card-sized

 720MHz ARM processor

 Operating system: Linux computer

 Connectivity: 2 x 46 pin headers

6

11

More about the hardware

Motor controller: controls motors up to 350 W

 Controls force of motors according to given
voltage & direction signal

 Optimized for controlling e-bike motors

Motor:

 Integrated Hall sensor to determine position

 Accumulator

 36 V / 12 Ah with electronic management

12

SmartWalker: Software

Single-board computer

 Measures 2D position

 Speed control loop for each wheel

 Controls wheels concurrently

Tablet PC:

 User interface

 High-level control

 Roboscoop

Communication over ROS

7

13

Roboscoop

Coordination layer above SCOOP (and hence Eiffel)

Three-layer architecture (Gat, 1997):
 Deliberation
 Sequence
 Control

Synchronization: wait conditions

Interoperability through ROS
(external calls)

Deliberator

Sequencer

Controller

Sensors

Actuators
Start, Stop

Query,
Respond

Submit plan

Query,
Respond

Submit plan

Query, Respond

14

EXECUTOR

WALKER_
SIGNALER

PATH_
SIGNALER

STOP_
SIGNALER

path_signaler

stop_signaler

walker_signaler

WHEEL

Object architecture

left, right

ACTION

LIST […]actions:

TIMER
timer

& processor

8

15

SCOOP: separate calls (“embarrassingly parallel”)

walker_signaler: separate WALKER_SIGNALER
-- From sensors: position, orientation…,

stop_signaler: separate STOP_SIGNALER
path_signaler: separate PATH_SIGNALER
actions: LIST [separate ACTION]

start_path (left, right: separate WHEEL)
-- Perform sequence given by actions.

local
i: INTEGER

do
across actions as a until

stop_requested (stop_signaler)
loop

execute (a, path_signaler, stop_signaler, left, right)
wait (a, path_signaler, stop_signaler, left, right)

end
end

16

SCOOP: synchronization through preconditions

to_next (a: ACTION
left, right: separate WHEEL
ps: separate PATH_SIGNALER
ss: separate STOP_SIGNALER
ws: separate WALKER_SIGNALER)

--Unless stop requested, complete a and enable next action.
require

ss.stop_requested or (ps.state = a.index and a.done (ws))
do

left.stop
right.stop
if not ss.stop_requested then

ps.set_state (a.index + 1)
end

end

9

17

SCOOP: wait by necessity

path: LIST [separate ACTION]
executor: EXECUTOR

-- To obtain actions from a script:
path := parser.item (script)

-- To execute sequence of actions:
across path as p loop add_action (executor, p.item) end

add_action (e: separate EXECUTOR; a: separate ACTION)
--Add a to action executor.

local
s: BOOLEAN

do
e.add_action (a)
s := a.done -- The order matters!

end

18

Application to teaching

New interdisciplinary course at ETH, Fall 2013:

Robot Programming Laboratory
Open to CS and ME students

Combines software engineering, concurrency & robotics:

 How software engineering applies to robotics

 Main architectures, coordination, synchronization methods

 Experience in programming a small robotic system

 Sensing, planning and control

 ROS and Roboscoop

10

19

Things we learned

Concurrency is great for robotics

A SmartWalker would be truly useful

This stuff is tough

20

Roboscoop: what’s next?

Gain more experience through course

Continue enhancing the Roboscoop concurrency framework

Add sensors to SmartWalker!

Implement SmartWalker scenarios

Evaluate applicability to other robots

Perform evaluation of SCOOP for robotics

