A vaw Signal
4% \ collect

Processing Web-Scale Graphs

in Seconds

Abraham Bernstein, Philip Stutz, Mihaela Verman

&Ys; i ;r(/ 4 e
I S Dynamic and Distributed § ﬁ;ﬁ %% U nive rsrty Of
Information Systems L e S Z u ric hUZH

O
O
2
=
G
(g}
-
V)
(g}
=

Graphs

Processing Graphs Naturally

Processing Graphs Naturally
Vertices as Actors

Vertices interact through ‘

sighals along edges k*

Which are collected into
new vertex states *

»
‘*ﬂé

Simplified PageRank

sighal = state / outEdgeCount

collect = |0 + sum(signals)

D

Y y Example Algorithms

PageRank (Data-Graph)
initialState baseRank
collect(...) return baseRank + dampingFactor x sum(signals)

signal (...

Citation Graph

Publications represented as vertices. ‘30

Citations represented as edges.

Use simplified PR to rank publications.

“A publication has a high rank if it has
citations from other publications with high
ranks.”

Example Problem

Goal: Implement simplified PageRank to identify the
publications with the highest ranks in the dataset.

Dataset from DBLP with | 14 657 citations between
26 907 ids of computer science publications.

Represented as LOD triples:

publication|[lURL citesURL publication2URL .
publication|[lURL citesURL publication3URL .
publication3URL citesURL publication5URL .

Source: http://dblp.13s.de/dblp++.php

Code for Example

import com.signalcollect._
import java.io.FileInputStream
import org.semanticweb.yars.nx.parser.NxParser

class Publication(id: String, initialState: Double =) extends
DataGraphVertex(id, initialState) {

type Signal = Double

def collect = initialState + signals.sum

}

class Citation(targetld: String) extends DefaultEdge(targetld) {
type Source = Publication
def signal = source.state / source.outgoingEdges.size

¥

object Example extends App {
val graph = GraphBuilder.build
Parser.processCitations("./citations.nt"”, processCitation)

Results

(only I entry per author)

* K %

A Relational Model of Data for
Large Shared Data Banks

E. F. Copp
IBM Research Laboratory, San Jose, California

Future users of large data banks must be protected from
having to know how the data is organized in the machine (the
internal representation). A prompting service which supplies
such information is not a satisfactory solution. Activities of users
at terminals and most application programs should remain
unaffected when the internal representation of data is changed
and even when some aspects of the external representation
are changed. Changes in data representation will often be
needed as a result of changes in query, update, and report
traffic and natural growth in the types of stored information.

Existing noninferential, formatted data systems provide users
with tree-structured files or slighly more general network
models of the data. In Section 1, inadequacies of these models
are discussed. A model based on n-ary relations, a normal
form for data base relations, and the concept of a universal
data sublanguage are introduced. In Section 2, certain opera-
tions on relations (other than logical inference) are discussed
and applied to the problems of redundancy and consistency
in the user's model.

The Entity-Relationship Model—Toward a

PETER PIN-SHAN CHEN

Massachusetts Institute of Technology

A data model, called the entity-relationship model, is proposed. This model incorporates some of

3 I o graInma s
introduced as a tool for database des abase design and description using
the model and the diag natic technique is given. Some implications for data integrity, infor-
mation retrieval, and data manipulation are discussed

i of data:
the network model, the relational model, and the entity set model. Semantic ambiguities in these
models are analyzed. Possible ways to derive their views of data from the entity-relationship
model are presented.

Key Words and Phrases: database design, logical view of data, semantics of data, data models,

model, data definition and manipulation, data integ

System R: Relational Approach to Database
Management

M. M. ASTRAHAN, M. W. BLASGEN, D. D. CHAMBERLIN,

K. P. ESWARAN, J. N. GRAY, P. P. GRIFFITHS,

W. F. KING, R. A. LORIE, P. R. MCJONES, J. W. MEHL,

G. R. PUTZOLU, |. L. TRAIGER, B. W. WADE, AND V. WATSON

IBM Research Laboratory

System R is a database management system which provides a high level relational data interface.
The system provides a high level of data independence by isolating the end user as much as
possible from underlying storage structures. The system permits definition of a variety of relational
views o nmon underlying data. Data control features are provided, including authorization,
integrity assertions, triggered transactions, a logging and recovery subsystem, and facilities for
maintaining data consistency in a shared-update environment,

This paper contains a deseription of the overall architecture and design of the system. At the
present time the system is being implemented and the design evaluated. We emphasize that
System R is a vehicle for research in database architecture, and is not planned as a product.

Key Words and Phrases: database, relational model, nonprocedural language, authorization,

locking, recovery, data structures, index structures
CR categories: 3.74, 4.22, 4.33, 4.35

Evaluation
Scalability on one machine

[~&—synchronous = —#—eager asynchronous

N
(@)]

w Bsynchronous ®eager asynchronous

-
w

—
—

[(e]

Speedup avg:avg

M
S
c
o
o
@
"
'
@
£
-

60

1 13 15 17 19 21 23 9 11 13 15 17 19 21 23
Worker Threads # Worker Threads

PageRank on web graph dataset, 875 713 vertices (websites) and 5 105 039 edges (links)
Machine with two twelve-core AMD Operon 6174 processors and 66 GB RAM

Evaluation
Scalability on a cluster

4 6 8 10 12

Nodes

—_
(2]
T
c
o
(5]
[«¥]
()
~—
(Y]
£
-

Speedup avg:avg

8
Nodes

PageRank on 12 machines (24 cores, 66GB RAM each)
> 1.4 billion vertices, > 6.6 billion edges, |2 machines (24 cores, 66GB RAM each)
Fastest execution time (fully converged): 137s, loading time: 45s

Evaluation
Asynchronous vs. Synchronous

== synchronous
=& eager asynchronous

=&—DSA-Async avg. computation time (s)
== DSA-Sync avg. computation time (s)

w
E=]
c
o
o
Q
L
Q
£
=
E
=]
E
£
=

120 125
Colours

Simple greedy algorithm for solving vertex colorii
problem on a 100x100 latin square.

10*10 32*32 100100 317*317 10001000 3163*3163

Average computation time over 10 runs for a
6 coloring on grids of varying sizes

Machine with two twelve-core AMD Operon 6174 processors and 66 GB RAM

1 frames
| USWe=2

-
O
=
O
<
=
Vo)
-
.
O
O
@,
X
),
)
0
>

i

Dissemination

® Scientific publications (under review)

® Open Source Software on GitHub

e FOSDEM’I3

Signal/Collect: Processing Web-Scale Graphs in Seconds

PHILP STUTZ Univrsiy o zarch
DANIEL STRE 2
ABRAHAM BERNSTEIN. tneraty ofZurich

confoned it theneed to proces ncreasinglylrg
a natural graph repre 1o use MapReduc for scalablo processing, but this ab.
jamed for graphs hen it comes to both terative and asynchronous

ing, which are parti

and asynchr

I an giving
ot v chtering, mfrencing, oaking ashcatin.conssin o
Furthermore, wo built and evaluated a parallel and distributed framework that
We empircallyshow that our ramovork ffienly and salabl .‘.mm
hat are expressed in the programming model. We
et e o oo o & oty Pogeon
Mmuwmw‘.“\ world webgraph i merely 136 scconds - achieved with ony owelve ommoty

tributed algorithms; Paralle] algo-
tories]; General and reference

Additonal Key Nords nd Phrse: Dbt Camptig, Sy, Programming A ns, Pro
gramming Models, Graph Processing,
ACH Referance Format

Daniel Srchel,and Abraha Bernstcin, 2017 Sgnal Cllect:Processing W Sale Graphs i
Seconde ACNIY N, Al A Gamuary pa
DT~ 10.1145/0000000.0000000 hitp:/do.acr org 1.1145/00000

1. INTRODUCTION

o o the most versatils data structurs, They can be considored a
it datastructures such a lsts and trecs. In additon, many
it cial s friendship

e o vt =urh ki
Coupled with the ever exp a « of computation nd capturcd data
Hilbert and Lopez 20111, this means that rescarchers and industry are presented with
paper v ignifcant estonionof St .l 2011, 1 contains un updted and mor dealod do-

ming mod

ming model, a larger selection of lgorithm adaptations, a distributed version
vork, and wih more extensive evluations on a graph tht s ore than 1000 e

e work awned by oer
Copy tberaive 1o epebli. o
ki other works ratire prir
biications Dept., ACM, Inc

$10.
ot 1011461000000 0000060 iyt sem rg/10.11450000000 0000000

ACM Transactions on the Web, Vo, V, N. N, Artcl A, Publication date: January YYYY.

£ uzh.github.com

Signal/Collect Getting Started Documentation

Signal/Collect

Allows you to process large graphs in seconds.

Fast and scalable Easy to use Configurable
Algorithr re automatically executed in parallel. Many algorithms can be exps ed in just a few The defaults get you started quickly, but
lines of code. everything can be customized.

How it works

In Signal/Collect algorithms are written from the perspective of vertices and edges. Once a graph has been specified the edges will signal and the vertices will
collect. When an edge signals it computes a message based on the state of its source vertex. This message is then sent along the edge to the target vertex of
the edge. When a vertex collects it uses the received messages to update its state. These operations happen in parallel all over the graph until all messages
have been collected and all vertex states have converged.

Many algorithms have very simple and elegant implementations in Signal/Collect. Please take the time to explore some of the example algorithms below
Example Algorithms
'ageRank

import com.signale

£3 hitps @ fosdem.org

Brussels = 2 & 3 February 2013

» ' PN
’ L
-
FOSDEM is a free event that offers open source SPONSORS
communities a place to meet, share ideas and collaborate. ‘ dh t
Itis renowned for being highly developer-oriented and brings together re da

5000+ geeks from all over the world. ';'";é'o" COLE ~eomerin C

No registration necessary. (7‘,) @LPI oracLe O'REILLY*

Feedback!?
FOSDEM 2013 is over and it was once again a HUGE success!
A big, enourmeous massive thanks to all the volunteers, speakers and visitors for making it so awesome.
Before we hibernate for half a year, we want to know one thing from you: what did you like, what didn't you like?
Give use feedback please! A simple email to:
e ————————
R ———

Rl L D e e N

Evaluation
Scalability on a cluster

o

>
I I
£ g
8 m©

=3
3 S
: 3
3
£ 2
= »

6 8
Nodes # Nodes

PageRank on 12 machines (24 cores, 66GB RAM each)
> 1.4 billion vertices, > 6.6 billion edges, |2 machines (24 cores, 66GB RAM each)
Fastest execution time (fully converged): 137s, loading time: 45s

