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Processing Graphs Naturally



Processing Graphs Naturally
Vertices as Actors

Vertices interact through 
signals along edges

Which are collected into 
new vertex states



Simplified PageRank

signal = state / outEdgeCount

collect = 10 + sum(signals)
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Example Algorithms

PageRank (Data-Graph)

initialState baseRank

collect(...) return baseRank + dampingFactor

*

sum(signals)

signal(...) return source.state

*

edge.weight / sum(edgeWeights(source))

PageRank (Data-Graph)

initialState baseRank

collect(...) return baseRank + dampingFactor

*

sum(signals)

signal(...) return source.state

*

edge.weight / sum(edgeWeights(source))
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Citation Graph

Publications represented as vertices.

Citations represented as edges.

Use simplified PR to rank publications.

“A publication has a high rank if it has 
citations from other publications with high 

ranks.”
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Example Problem

Goal: Implement simplified PageRank to identify the 
publications with the highest ranks in the dataset.

Dataset from DBLP with 114 657 citations between 
26 907 ids of computer science publications.

Represented as LOD triples:

publication1URL    citesURL    publication2URL .
publication1URL    citesURL    publication3URL .
publication3URL    citesURL    publication5URL .

...

Source: http://dblp.l3s.de/dblp++.php



Code for Example
Example.scala

import com.signalcollect._
import java.io.FileInputStream
import org.semanticweb.yars.nx.parser.NxParser

class Publication(id: String, initialState: Double = 10) extends 
DataGraphVertex(id, initialState) {
  type Signal = Double
  def collect = initialState + signals.sum
}

class Citation(targetId: String) extends DefaultEdge(targetId) {
  type Source = Publication
  def signal = source.state / source.outgoingEdges.size
}

object Example extends App {
  val graph = GraphBuilder.build
  Parser.processCitations("./citations.nt", processCitation)
  def processCitation(citer: String, cited: String) {
    graph.addVertex(new Publication(citer))
    graph.addVertex(new Publication(cited))
    graph.addEdge(citer, new Citation(cited))
  }
  graph.execute
  val top10 = graph.aggregate(new TopKFinder[Double](10))
  top10 foreach (println(_))
  graph.shutdown
}

object Parser {
  def processCitations(
    fileName: String,
    handler: (String, String) => Unit) {
    val is = new FileInputStream(fileName)
    val nxp = new NxParser(is)
    while (nxp.hasNext) {
      val triple = nxp.next
      handler(triple(0).toString, triple(2).toString)
    }
  }
}
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Results

Information Retrieval P. BAXENDALE, Editor 

A Relational Model of Data for 
Large Shared Data Banks 

E. F. CODD 
IBM Research Laboratory, San Jose, California 

Future users of large data banks must be protected from 
having to know how the data is organized in the machine (the 
internal representation). A prompting service which supplies 
such information is not a satisfactory solution. Activities of users 
at terminals and most application programs should remain 
unaffected when the internal representation of data is changed 
and even when some aspects of the external representation 
are changed. Changes in data representation will often be 
needed as a result of changes in query, update, and report 
traffic and natural growth in the types of stored information. 

Existing noninferential, formatted data systems provide users 
with tree-structured files or slightly more general network 
models of the data. In Section 1, inadequacies of these models 
are discussed. A model based on n-ary relations, a normal 
form for data base relations, and the concept of a universal 
data sublanguage are introduced. In Section 2, certain opera- 
tions on relations (other than logical inference) are discussed 
and applied to the problems of redundancy and consistency 
in the user’s model. 

KEY WORDS AND PHRASES: data bank, data base, data structure, data 
organization, hierarchies of data, networks of data, relations, derivability, 

redundancy, consistency, composition, join, retrieval language, predicate 
calculus, security, data integrity 

CR CATEGORIES: 3.70, 3.73, 3.75, 4.20, 4.22, 4.29 

1. Relational Model and Normal Form 

1 .I. INTR~xJ~TI~N 
This paper is concerned with the application of ele- 

mentary relation theory to systems which provide shared 
access to large banks of formatted data. Except for a paper 
by Childs [l], the principal application of relations to data 
systems has been to deductive question-answering systems. 
Levein and Maron [2] provide numerous references to work 
in this area. 

In contrast, the problems treated here are those of data 
independence-the independence of application programs 
and terminal activities from growth in data types and 
changes in data representation-and certain kinds of data 
inconsistency which are expected to become troublesome 
even in nondeductive systems. 

Volume 13 / Number 6 / June, 1970 

The relational view (or model) of data described in 
Section 1 appears to be superior in several respects to the 
graph or network model [3,4] presently in vogue for non- 
inferential systems. It provides a means of describing data 
with its natural structure only-that is, without superim- 
posing any additional structure for machine representation 
purposes. Accordingly, it provides a basis for a high level 
data language which will yield maximal independence be- 
tween programs on the one hand and machine representa- 
tion and organization of data on the other. 

A further advantage of the relational view is that it 
forms a sound basis for treating derivability, redundancy, 
and consistency of relations-these are discussed in Section 
2. The network model, on the other hand, has spawned a 
number of confusions, not the least of which is mistaking 
the derivation of connections for the derivation of rela- 
tions (see remarks in Section 2 on the “connection trap”). 

Finally, the relational view permits a clearer evaluation 
of the scope and logical limitations of present formatted 
data systems, and also the relative merits (from a logical 
standpoint) of competing representations of data within a 
single system. Examples of this clearer perspective are 
cited in various parts of this paper. Implementations of 
systems to support the relational model are not discussed. 

1.2. DATA DEPENDENCIES IN PRESENT SYSTEMS 
The provision of data description tables in recently de- 

veloped information systems represents a major advance 
toward the goal of data independence [5,6,7]. Such tables 
facilitate changing certain characteristics of the data repre- 
sentation stored in a data bank. However, the variety of 
data representation characteristics which can be changed 
without logically impairing some application programs is 
still quite limited. Further, the model of data with which 
users interact is still cluttered with representational prop- 
erties, particularly in regard to the representation of col- 
lections of data (as opposed to individual items). Three of 
the principal kinds of data dependencies which still need 
to be removed are: ordering dependence, indexing depend- 
ence, and access path dependence. In some systems these 
dependencies are not clearly separable from one another. 

1.2.1. Ordering Dependence. Elements of data in a 
data bank may be stored in a variety of ways, some involv- 
ing no concern for ordering, some permitting each element 
to participate in one ordering only, others permitting each 
element to participate in several orderings. Let us consider 
those existing systems which either require or permit data 
elements to be stored in at least one total ordering which is 
closely associated with the hardware-determined ordering 
of addresses. For example, the records of a file concerning 
parts might be stored in ascending order by part serial 
number. Such systems normally permit application pro- 
grams to assume that the order of presentation of records 
from such a file is identical to (or is a subordering of) the 
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The Entity-Relationship Model-Toward a 
Unified View of Data 

PETER PIN-SHAN CHEN 

Massachusetts Institute of Technology 

A data model, called the entity-relationship model, is proposed. This model incorporates some of 
the important semantic information about the real world. A special diagrammatic technique is 
introduced as a tool for database design. An example of database design and description using 
the model and the diagrammatic technique is given. Some implications for data integrity, infor- 
mation retrieval, and data manipulation are discussed. 

The entity-relationship model can be used as a basis for unification of different views of data: 
t,he network model, the relational model, and the entity set model. Semantic ambiguities in these 
models are analyzed. Possible ways to derive their views of data from the entity-relationship 
model are presented. 
Key Words and Phrases: database design, logical view of data, semantics of data, data models, 
entity-relationship model, relational model, Data Base Task Group, network model, entity set 
model, data definition and manipulation, data integrity and consistency 
CR Categories: 3.50, 3.70, 4.33, 4.34 

1. INTRODUCTION 

The logical view of data has been an important issue in recent years. Three major 
data models have been proposed: the network model [2, 3, 71, the relational model 
[S), and the entity set model [25]. These models have their own strengths and 
weaknesses. The network model provides a more natural view of data by separating 
entities and relationships (to a certain extent), but its capability to achieve data 
independence has been challenged [S]. The relational model is based on relational 
theory and can achieve a high degree of data independence, but it may lose some 
important semantic information about the real world [12, 15, 231. The entity set 
model, which is based on set theory, also achieves a high degree of data inde- 
pendence, but its viewing of values such as “3” or “red” may not be natural to 
some people [25]. 

This paper presents the entity-relationship model, which has most of the ad- 
vantages of the above three models. The entity-relationship model adopts the 
more natural view that the real world consists of entities and relationships. It 

Copyright @ 1976, Association for Computing Machinery, Inc. General permission to republish, 
but not for profit; all or part of this material is granted provided that ACM’s copyright notice is 
given and that reference is made to the publication, to its date of issue, and to the fact that 
reprinting privileges were granted by permission of the Association for Computing Machinery. 
A version of this paper was presented at the International Conference on Very Large Data Bases, 
Framingham, Mass., Sept. 22-24, 1975. 
Author’s address: Center for Information System Research, Alfred P. Sloan School of Manage- 
ment, Massachusetts Institute of Technology, Cambridge, MA 02139. 

ACM Transactions on Database Systems, Vol. 1, No. 1. March 1976, Pages 9-36. 
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System R: Relational Approach to Database 
Management 

M. M. ASTRAHAN, ht. W. BLASGEN, D. D. CHAMBERLIN, 
K. P. ESWARAN, J. N. GRAY, P. P. GRIFFITHS, 
W. F. KING, R. A. LORIE, P. R. A&JONES, J. W. MEHL, 
G. R. PUTZOLU, I. L. TRAIGER, B. W. WADE, AND V. WATSON 

IBM Research Laboratory 

System R is a database management system which provides a high level relational data interface. 
The system provides a high level of data independence by isolating the end user as much as 
possible from underlying storage structures. The system permits definition of a variety of relational 
views on common underlying data. Data control features are provided, including authorization, 
integrity assertions, triggered transactions, a logging and recovery subsystem, and facilities for 
maintaining data consistency in a shared-update environment. 

This paper contains a description of the overall architecture and design of the system. At the 
present time the system is being implemented and the design evaluated. We emphasize that 
System R is a vehicle for research in database architecture, and is not planned as a product. 
Key Words and Phrases: database, relational model, nonprocedural language, authorization, 
locking, recovery, data structures, index structures 
CR categories: 3.74, 4.22, 4.33, 4.35 

1. INTRODUCTION 

The relational model of data was introduced by Codd [7] in 1970 as an approach 
toward providing solutions to various problems in database management. In par- 
ticular, Codd addressed the problems of providing a data model or view which is 
divorced from various implementation considerations (the data independence 
problem) and also the problem of providing the database user with a very high 
level, nonprocedural data sublanguage for accessing data. 

To a large extent, the acceptance and value of the relational approach hinges on 
the demonstration that a system can be built which can be used in a real environ- 
ment to solve real problems and has performance at least comparable to today’s 
existing systems. The purpose of this paper is to describe the overall architecture 
and design aspects of an experimental prototype database management system 
called System R, which is currently being implemented and evaluated at the IBM 
San Jose Research Laboratory. At the time of this writing, the design has been 

- 
Copyright @ 1976, Association for Computing Machinery, Inc. General permission to republish, 
but not for profit, all or part of this material is granted provided that ACM’s copyright notice is 
given and that reference is made to the publication, to its date of issue, and to the fact that 
reprinting privileges were granted by permission of the Association for Computing Machinery. 
Authors’ address: IBM Research Laboratory, San Jose, CA 95193. 

ACM Transactions on Database Systems, Vol. 1, No. 2. June 1976, Pages 97-137. 
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Scalable Graph Processing with Signal/Collect A:23
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Fig. 3. Multi-Core Scalability of PageRank
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Fig. 4. Multi-Core Scalability of Single-Source Shortest Path

curately and are hard to control for reliably. Because all these confounding factors dis-
advantage the version with many workers and shorter running times, we can assume
that the measured speedup is a lower bound for the speedup that could be achieved if
the confounding factors were eliminated.

5.2.2. Distributed (horizontally/scale out). Todo 5-41: Compare with GPS 100 iterations
Todo 5-42: Run PR on small graph using 12 nodes Todo 5-43: Spark 5 iterations on
twitter graph time for comparison Todo 5-44: 1gb ethernet Todo 5-45: Ping Laptop to
Kraken

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Evaluation 
Scalability on one machine

PageRank on web graph dataset, 875 713 vertices (websites) and 5 105 039 edges (links)

Machine with two twelve-core AMD Operon 6174 processors and 66 GB RAM
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Fig. 5. Horizontal scalability of PageRank on the Yahoo! AltaVista Web Page Hyperlink Connectivity Graph
with 1 413 511 390 vertices and 6 636 600 779 edges. The bars in 5(a) show the average execution time over
10 runs, while the error bars indicate the fastest and slowest runs. 5(a) plots the speedup relative to the
average execution with 4 nodes.
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Fig. 6. Todo 5-46: add caption

5.3. Synchronous vs. Asynchronous
In subsection 3.5 we described the potential benefits of asynchronous scheduling. In
order to measure how much impact the lower latency signal propagation has, we ran
PageRank and SSSP with both kinds of schedulers in the previously described scalabil-
ity experiments (see figures 3 and 4). Asynchronous scheduling is on average between

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Evaluation 
Scalability on a cluster

PageRank on 12 machines (24 cores, 66GB RAM each)
> 1.4 billion vertices, > 6.6 billion edges, 12 machines (24 cores, 66GB RAM each)

Fastest execution time (fully converged): 137s, loading time: 45s



Evaluation 
Asynchronous vs. Synchronous
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Fig. 7. Vertex colouring with a varying number of colours on a Latin Square problem with 100 * 100 vertices
and almost one million undirected edges. The data points are connected to make the shape more visible.

Todo 6-1: high outdegree vertices: aggregation operation to identify high in/out-degree
vertices, apply splitting operation to these vertices and relink all edges that pointed at
the initial vertex. connect the vertices in a way that allows them to reconstruct full state
from each other’s partial state.

Todo 6-2: high out-degree: can parallelise signaling to smear workload across mul-
tiple threads. vertex can auto-split itself to spread out the load

Todo 6-3: Argue for Job restarts instead of checkpointing
Efficient DataFlow requires replication for stateless processing vertices,
Problematic: DataFlow join vertices,
Load balancing can be problematic,
Load balancing vs reduced messaging: Graph partitioning
Todo 6-4: caveat: scalability numbers are better, when considering embarrassingly

parallel graph loading. we do not do that, so we are better than we look in the diagram
compared to GL.

Error recovery
Todo 6-5: absent fault tolerance. how to implement? chandy-lamport snapshot algo-

rithm, look up and cite.
Todo 6-6: STANTON, I., AND KLIOT, G. Streaming graph partitioning for large

distributed graphs. Tech. Rep. MSR-TR-2011-121, Microsoft Research, November 2011.
Todo 6-7: explore use cases for priority scheduler, A* algorithm
Todo 6-8: debugging is hard with asynchronous + graph modifications
Todo 6-9: lack of parallelism within processing vertices when used for dataflow pro-

cessing: each vertex only on one machine, not replicated

7. CONCLUSIONS
Todo 7-1: flexible tradeoff between modularity and performance, allows for fast proto-
typing and high performance

ACKNOWLEDGMENTS
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Simple greedy algorithm for solving vertex coloring 
problem on a 100x100 latin square.

Machine with two twelve-core AMD Operon 6174 processors and 66 GB RAM
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Vertex Coloring in Action

Optimized Version of DSA Running on a MacBoo Pro with 8 workers
(slow, due to lots of IO for logging, bookkeeping, etc.)



Dissemination
• Scientific publications (under review)

• Open Source Software on GitHub

• FOSDEM’13
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Signal/Collect: Processing Web-Scale Graphs in Seconds

PHILIP STUTZ, University of Zurich
DANIEL STREBEL, University of Zurich
ABRAHAM BERNSTEIN, University of Zurich

Both researchers and industry are confronted with the need to process increasingly large amounts of data,
much of which has a natural graph representation. Some use MapReduce for scalable processing, but this ab-
straction is not designed for graphs and has shortcomings when it comes to both iterative and asynchronous
processing, which are particularly important for graph algorithms.

This paper presents the Signal/Collect programming model for scalable synchronous and asynchronous
graph processing. We demonstrate that this abstraction can capture the essence of many algorithms on
graphs in a concise and elegant way by giving Signal/Collect adaptations of algorithms that solve tasks as
varied as clustering, inferencing, ranking, classification, constraint optimisation, and even query matching.
Furthermore, we built and evaluated a parallel and distributed framework that executes algorithms in our
programming model. We empirically show that our framework efficiently and scalably parallelises and dis-
tributes algorithms that are expressed in the programming model. We also show that asynchronicity can
speed up execution times. Our framework computes a high-quality PageRank on a large (>1.4 billion ver-
tices, >6.6 billion edges) real-world webgraph in merely 136 seconds – achieved with only twelve commodity
machines.

Categories and Subject Descriptors: Computing methodologies [Distributed algorithms; Parallel algo-
rithms]; Software and its engineering [Software libraries and repositories]; General and reference
[Design; Performance; Evaluation; Experimentation]

Additional Key Words and Phrases: Distributed Computing, Scalability, Programming Abstractions, Pro-
gramming Models, Graph Processing, Graph Algorithms

ACM Reference Format:
Philip Stutz, Daniel Strebel, and Abraham Bernstein, 201?. Signal/Collect: Processing Web-Scale Graphs in
Seconds. ACM V, N, Article A (January YYYY), 36 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
Graphs are one of the most versatile data structures. They can be considered a gener-
alisation of other important data structures such as lists and trees. In addition, many
structures—be it physical such as transportation networks, social such as friendship
networks or virtual such as computer networks—have natural graph representations.

Coupled with the ever expanding amounts of computation and captured data
[Hilbert and López 2011], this means that researchers and industry are presented with

This paper is a significant extension of [Stutz et al. 2010]. It contains an updated and more detailed de-
scription of the programming model, a larger selection of algorithm adaptations, a distributed version of the
underlying framework, and with more extensive evaluations on a graph that is more than 1000 times larger
than the ones reported on before.
This work is supported by the Hasler Foundation under grant number 11072.
Author’s addresses: P. Stutz, D. Strebel, and A. Bernstein, Dynamic and Distributed Information Systems
Group, Department of Informatics, University of Zurich, Binzmühlestrase 14, 8050 Zürich, Switzerland.
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for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c� YYYY ACM 1539-9087/YYYY/01-ARTA $10.00
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Evaluation 
Scalability on a cluster

PageRank on 12 machines (24 cores, 66GB RAM each)
> 1.4 billion vertices, > 6.6 billion edges, 12 machines (24 cores, 66GB RAM each)

Fastest execution time (fully converged): 137s, loading time: 45s


